• Search

Axol Incubator

Human iPSC-derived cardiomyocytes: studying cardiomyocytes in vitro

Traditionally, there have been difficulties in obtaining and culturing human cardiac cells of a high quality due to a scarcity of healthy donor material, culture issues associated with the non-dividing state of terminally differentiated cardiomyocytes. The development of human embryonic stem cell technology allowed major advancements to be made as protocols were developed to differentiate cardiomyocytes from a replenishable pluripotent source. A huge issue with the use of human embryonic stem cell-derived cells was the controversial ethical issues and strict regulations regarding their use. This meant that Yamanaka's breakthrough when his group produced the Nobel Prize winning technology in the form of induced pluripotent stem cells had a gargantuan impact on the study of human cardiac cells.

A sit-down with Steve Rees: the importance of understanding renal toxicity in drug development

Drug toxicity is a significant cause of clinical failure, accounting for approximately one third of all pipeline attrition. This has driven huge interest across the pharmaceutical industry to understand drug toxicity early within the drug development pipeline. The aim of this is to de-risk drug candidates from a safety perspective before they enter the clinic, as well as reducing the substantial costs associated with drug development.

Astrocytes: characteristics and function in development and disease

Characterized by their star-like shape astrocytes, also known as astroglia, represent the most abundant cell type in the brain. Closely linked to neurons with pivotal roles in synaptic activity and blood-brain barrier function, the study of astrocytes using in vitro co-culture models is becoming increasingly important in neuroscience research.

Reprogramming somatic cells to induced pluripotent stem cells (iPSC): A cellular career change

Somatic cells can be compared to human beings in that they grow up to perform a specific function in life. While a human being may develop into a world class athlete or a research scientist, a somatic cell can develop into any of the cell types that make up an organism except the germline cells.

Using hiPSC-Derived Renal Proximal Tubular Cells in vitro assays to advance disease research and drug development

The rising numbers of kidney patients and a shortage of transplantable organs is a global health issue with high economic costs. Previous disease research and drug development has traditionally used animal models, but these fail to recapitulate human renal cellular function and so limit our ability to elucidate disease mechanisms and therapeutic targets.

Induced Pluripotent Stem Cells: recapitulating disease to facilitate drug discovery

Download our free white paper ‘Induced Pluripotent Stem Cells: recapitulating disease to facilitate drug discovery‘

Using human iPSC-derived cortical neurons for the early prediction of neurotoxicity

All pharmaceutical development programs carry a certain amount of risk. However, when it comes to developing drugs that target the central nervous system, the odds of success narrow significantly.

The rise of hiPSC-Derived Motor Neurons as a physiologically relevant model for drug discovery

Amyotrophic Lateral Sclerosis (ALS), a Motor Neuron Disease (MND) subtype, is a debilitating neurodegenerative disorder affecting the upper and lower motor neurons (UMNs/LMNs), brain stem and spinal cord. This leads to progressive muscular weakness and atrophy, paralysis, and eventually death, usually within three to five years after the onset of symptoms. Decades of failed drug development mean that MND/ALS is still incurable; only two FDA-approved drugs exist (riluzole, and more recently, edaravone), but these only slow down disease progression.

Human iPSC-Derived Motor Neurons: Expert tips on best cell-culture practices to enhance your research

Despite intensive research, there is still no known cure or standard treatment for Amyotrophic Lateral Sclerosis (ALS), a Motor Neuron Disease (MND) subtype. Researchers have traditionally used animal models (usually mice) to screen candidate compounds, but these models are now known to lack physiological relevance to the human pathology, which could limit translational drug development.

Using human iPSC-Derived Renal Cells to enhance safety toxicity testing during drug development

Kidneys play a key role in removing waste and toxins from the body, as well as having essential endocrinological and homeostatic functions. If certain pharmaceuticals are abused, administered incorrectly or taken regularly, they can induce toxicity in the kidneys (nephrotoxicity). This can result in impaired renal function, and even death in the most severe cases. For example, nephrotoxic drugs (NDs) are responsible for 19-25% of acute kidney injury in critically ill patients.

Enhancing Amyotrophic Lateral Sclerosis (ALS) drug discovery using physiologically relevant hiPSC-Derived Motor Neurons

Amyotrophic Lateral Sclerosis (ALS), a Motor Neurone Disease (MND) subtype is characterised by the degeneration and death of nerves (motor neurons) in the brain and the spinal cord that control essential voluntary muscle activity. Affecting over 400,000 patients worldwide each year, MND/ALS progressively causes difficulties in speaking, walking, breathing, and swallowing, with the disease eventually being fatal in about a quarter of all patients affected each year.

Guest Post: Are 3D neural cell cultures the best translational models towards finding a cure for Alzheimer's disease?

Diagnosed by the German psychiatrist and neuropathologist, Dr. Alois Alzheimer in 1906, Alzheimer’s disease (AD) is the most prevalent form of dementia in the ageing population (Korolev et al., 2014). Recently declared as the sixth major cause of death in the world; patients affected with AD suffer a gradual decline of cognitive abilities and memory functions till the disease renders them incapable of performing daily activities. Some of these traits, which are typical of neurodegenerative diseases are also shared by other forms of dementia.

Guest Post: Using neural stem cells for safety pharmacology studies

The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. There is a significant risk that a novel therapeutic agent might impact brain structure and function, resulting in serious pathologies and even death. Therefore, CNS testing forms part of the 'core battery' of safety pharmacology studies .

How to choose the best cell reprogramming approach for your research needs

There are different non-integrating reprogramming systems available to researchers along with the approaches Axol uses to generate hiPSCs from your cells. This white paper can help you choose the best cell reprogramming approach for your research needs.

Macrophages and the immune system: the role of microglia in immunity and neurodegenerative disease

The body’s immune system is our first line of defence against foreign substances, protecting us against infection and disease. It consists of a complex network of organs and cells that work to recognize and destroy these harmful substances, containing them at the site of infection. Macrophages play a crucial role in this; engulfing and destroying anything dangerous via phagocytosis.

Tracing the journey of monocytes to macrophages: what does it mean for your research?

The human immune response consists of a complex network of cells working together to identify and destroy foreign substances in the body. Two key players in this response mechanism are: 1) circulating peripheral blood monocytes, the cells first to the site of interest; and 2) macrophages, which arise at the point of injury or infection through differentiation of these monocytes into tissue-specific macrophages. Macrophages are responsible for destroying the foreign body before further infection occurs.

Why make the switch from animal cells to human iPSC-Derived Sensory Neurons?

Millions of people around the world suffer from debilitating pain. However, with impressive advances being made in pain research and drug discovery efforts, researchers are continuing to delve deeper into the molecular pathways underpinning pain, to ultimately improve both the screening of drug candidates and the quality of life for people across the world.

Expert tips on culturing human iPSC-Derived Sensory Neurons to aid your research

Innovations in biotechnology and advances in stem cell biology are currently revolutionizing biomedical research and drug discovery. One exciting breakthrough has been the ability to produce sensory neurons from human induced pluripotent stem cells (hiPSCs) and culture them in vitro on multi-electrode array (MEA) systems, to advance pain research and the discovery of effective pain therapies.

Axol Travel Grant Recipient: International Society for Stem Cell Research 2017

Axol Bioscience Travel Grant recipient, Helen Rowland, attended the ISSCR 2017, which took place in Boston, USA. Helen is a neuroscientist at the University of Manchester, UK. She shares her experience of the conference where she presented her research.

Axol Travel Grant Recipient: European Chapter Meeting of the Tissue Engineering and Regenerative Medicine International Society 2017

Axol Bioscience Travel Grant recipient, Eseelle Hendow, attended the European Chapter Meeting of the Tissue Engineering and Regenerative Medicine International Society 2017, which took place in Davos, Switzerland. Eseelle is a cardiovascular researcher at University College London, UK. She shares her experience of the conference where she presented her research.