• Search

Blog

Guest Post: Are 3D neural cell cultures the best translational models towards finding a cure for Alzheimer's disease?

Guest Post: Are 3D neural cell cultures the best translational models towards finding a cure for Alzheimer's disease?

Diagnosed by the German psychiatrist and neuropathologist, Dr. Alois Alzheimer in 1906, Alzheimer’s disease (AD) is the most prevalent form of dementia in the ageing population (Korolev et al., 2014). Recently declared as the sixth major cause of death in the world; patients affected with AD suffer a gradual decline of cognitive abilities and memory functions till the disease renders them incapable of performing daily activities. Some of these traits, which are typical of neurodegenerative diseases are also shared by other forms of dementia.

Guest Post: Using neural stem cells for safety pharmacology studies

Guest Post: Using neural stem cells for safety pharmacology studies

The brain is the most complex organ in the body, controlling our highest functions, as well as regulating myriad processes which incorporate the entire physiological system. There is a significant risk that a novel therapeutic agent might impact brain structure and function, resulting in serious pathologies and even death. Therefore, CNS testing forms part of the 'core battery' of safety pharmacology studies .

A suffering relationship in Alzheimer's disease

A suffering relationship in Alzheimer's disease

Age, diabetes and having the two copies of the gene for apolipoprotein E 4 (APOE ε4) are just some of the factors that significantly increase the chance of developing Alzheimer’s disease later on in life. Associate Professor Carmela Matrone’s research group used stem cells generated from Alzheimer’s disease patients with the APOE ε4 gene to show that this genetic risk factor is connected to a deterioration of a relationship between two key proteins, sortilin-related receptor (SORL1) and amyloid precursor protein (APP) 1 .

Nurturing Neuroscience

Nurturing Neuroscience

Our understanding of the central nervous system (CNS) has grown significantly in recent years. The advent of new technologies and products have enabled us to explore not only the molecular mechanisms involved in learning, development, memory formation, electrical conductivity and synaptic function but also the onset and deterioration of these systems in neurological disorders such as epilepsy, amyotrophic lateral sclerosis (ALS), Alzheimer’s, Huntington’s and Parkinson’s diseases as well as psychiatric conditions.

iPSC-Derived Neurons for Epilepsy Studies

iPSC-Derived Neurons for Epilepsy Studies

Epilepsy Neural Stem Cells (ax0411) cultured on Sure Bond+ (ax0041+). Image taken after 3 days of spontaneous differentiation in Neural Expansion-XF Medium (ax0030-500). nestin (R) - FOXG1 (G)