• Search

Resources

  1. Current Filters:
  2. Presentation
  3. Cardiovascular
  4. Clear filters
Presentation

Human iPSC-derived cardiomyocytes: A comparison with primary cells and applications in standard and 3D culture models

The University Hospital Bern studies the mechanisms of cancer therapy-associated cardiotoxicity, and wants to study this in cardiomyocytes, thus they always endeavor to use the most relevant in vitro culture systems. Therefore, they have recently started to develop a 3D-culture model using hiPSC-derived cardiomyocytes and have tested this system in comparison with mature primary cells.


Presentation

Induced pluripotent stem cell-derived endothelial colony forming cells offer a robust and physiologically relevant research tool

Human iPSC-Derived Endothelial Colony Forming Cells (ECFCs) (Axol Bioscience) are highly expandable and show comparable expression and functionality to primary cells, providing a robust and physiologically relevant tool for use in numerous applications. ECFCs are rare circulating endothelial cells that display a hierarchy of clonal proliferative potential and possess in vivo vessel-forming ability upon implantation. In numerous animal models of disease, human ECFCs have demonstrated the capacity to promote revascularization and reperfusion to injured vascular beds via direct integration and/or through paracrine effects.

Human umbilical cord blood is enriched in circulating ECFCs compared to adult peripheral blood. We have recently reported that ECFCs displaying properties similar to cord blood can be obtained from human ESCs and iPSCs. Using defined serum-free culture medium and sequential addition of specific growth factors, we’ve identified ECFC precursors within 12 days of iPSC differentiation. These iPSC-derived ECFCs display clonogenic proliferative potential and in vivo vessel forming ability similar to cord blood ECFCs and promote vascular repair and regeneration in multiple animal models of human disease.