• Search

Resources

  1. Current Filters:
  2. Application Note
  3. Cardiovascular
  4. Clear filters
Application Note

Non-invasive impedance monitoring of contractility in Axol Human iPSC-Derived Cardiomyocytes

The ability to monitor cardiomyocyte beat rate in real time is a powerful tool for drug discovery research. To do this, human iPSC-derived cardiomyocytes (iPSC-CMs) were cultured in a non-invasive impedance monitoring system (xCELLigence®) to assess cardiotoxicity and cell contractility in a 96-well plate format.


Application Note

Measuring Colony Forming Potential of Human iPSC-derived ECFCs in vitro

Measuring the colony forming potential of endothelial colony forming cells (ECFCs) is an excellent method for identifying the toxic effect of a compound on the proliferative potential of ECFCs.

Many disease pathologies are exacerbated by damage to blood vessels whereas increased vascularization encourages cancer progression and tumour growth, therefore there is an increased need for drugs that can alter the proliferative population of circulating ECFCs. This application note highlights the relevance and suitability for Human iPSC-Derived ECFCs in the investigation for compounds that target the anti- or pro-proliferative capabilities of ECFCs.

Three key points were covered in this study: Firstly, whether Axol Human iPSC-derived ECFCs were able to form colonies in vitro that hold a hierarchy of proliferative potentials equivalent to human primary cord blood ECFCs. Secondly, the in vitro colony forming potential of hiPSC-ECFCs was compared with human primary umbilical cord blood (CB) ECFCs. Finally, the application of ECFCs in a toxicity screen which identified the susceptible ECFC population.