• Search

Human iPSC-Derived Neural Stem Cells (Female)

Payment Options

We accept Visa and MasterCard in our online store.

Worldwide Shipping

We can get your purchases to you wherever you are.

Customer Care

As an Axol customer you have access to our support team and product specialists.


Axol Human iPSC-Derived Neural Stem Cells

Axol Human iPSC-Derived Neural Stem Cells (NSCs) are derived from integration-free, induced pluripotent stem cells (iPSCs) under fully defined neural induction conditions. The NSCs express typical markers of cerebral cortical neural stem and progenitor cells such as PAX6, FOXG1 and nestin, and spontaneously form polarized neural tube-like rosette structures when plated as a monolayer in culture (see below). Additionally, Axol NSCs are capable of generating a spectrum of cerebral cortical excitatory and inhibitory neurons that are electrically active and have the ability to form functional synapses and circuits in vitro. After thawing and plating, the neural stem cells terminally differentiate to acquire mature electrophysiological properties, and form functional synaptic networks over a period of 40 ~ 50 days.

Axol NSCs are easy to differentiate to neurons or mixed neural cell types, following our protocols and using our tailored media and reagent bundles. A highly pure population of neurons can be generated from Axol NSCs following the synchronous differentiation protocol. Using our specialized coating reagents, neurons derived from Axol NSCs can be maintained in culture long-term (>1 year). NSCs are available from multiple donors to suit your research needs and have been characterized extensively.

Product Specification

Starting material Dermal fibroblast
Donor gender Female
Donor age at sampling 64 yrs
Karyotype Normal
Reprogramming method Episomal vector
Induction method Monolayer & chemically defined medium
Genetic modification None
Size ≥1.5 million cells
Kit components 1 vial of Neural Stem Cells (≥1.5 million cells) and 1 bottle of Neural Plating-XF Medium (30 mL)
Growth properties Adherent
Shipping conditions Dry ice
Storage conditions vapour phase nitrogen

Frequently Asked Questions

Plate the cells on Readyset + Surebond (ax0052)

Always plate onto Surebond (ax0041) if you intend to detach the cells for continued expansion

Surebond-XF - Xeno-free coating reagent needed for endpoint assays on plastic, this is the easiest method of coating, with no wash steps. Surebond + Readyset - Coating reagent needed for endpoint assays on glass or 96-well plates Surebond- Coating reagent needed when passaging of NSCs is required

Please switch to the Maintenance Medium-XF after the suggested period of Neural differentiation medium-XF treatment (see page 12 and 15 of the Human iPSC-Derived Neural Stem Cell Master Protocol below).

Please make sure you change medium gently and avoid adding the medium from one side of the wells throughout the 5-6 weeks of culture. If the cells start to peel from the corners, it can be repaired by adding Surebond (ax0041) into your standard feeding media. Usually, we use 120 uL Surebond in 12 mL medium for a few days until the layer re-attach. This can be applied no matter what coating has been used.

Please follow the links below: Sync. differentiation: https://www.axolbio.com/web/binary/saveas?model=ir.attachment&field=datas&filename_field=name&id=77214&t=1556543155516 Spontaneous differentiation: https://www.axolbio.com/web/binary/saveas?model=ir.attachment&field=datas&filename_field=name&id=77213&t=1556543179728

We do not recommend using coating reagents whcih we have not tested with our cells. They might result in poor quality cultures and low adherence. Our SureBond, SureBond-XF and SureBond+ReadySet have been optimized to complement our cells and provide consistent results.

We do not recommend re-freeze the NSCs. Axol cannot guarantee the viability of the iPSC-derived NSCs and functionality of the neurons derived after re-freezing.

A long expansion period will increase the number of glial cells in your final population. We recommend conducting fewer passaging steps (< 3 passages) over a shorter period of time in order to reduce the glial cell population.

It is possible to achieve a 90% pure population of cerebral cortical neurons after terminal differentiation using Neural Differentiation-XF Medium (System B). Repeated expansion of the NSCs will increase the glial population and conversely decrease the neuronal population.

The ratio of deep to upper layer neurons will change with the number of days in culture. After 2 weeks in Neural Maintenance-XF Medium, approx. 60% of neurons express deep layer markers but this will decrease with length of time in culture. We would recommend spontaneous differentiation for over 40 days to see a large percentage of upper layer neurons.  

At day 21, spontaneous synaptic activities should be detected, and day 35 synchronised burst firing should occur.

Yes, Axol iPSC-Derived Cortical Neurons when co-cultured with astrocytes have been shown to respond to high frequency stimulation resulting in a change in spike frequency presenting as a depression of potentiation of network transmission.

We typically use PAX6, SOX2, Nestin, FOXG1, OTX, ASPM, N-cadherin and Ki67 to identify NSCs.

NeuN, TBR1, TUJ1, MAP2, GAD67, VGLUT1, Synaptophysin, CTIP2, CUX1 and BRN2 can be used to identify cerebral cortical neurons.

Please do not passage the NSCs more than 3 times as the cells will transition to gliogenic state over longer term culture. We found that the cells treated with growth factors (EGF and FGF2) gradually adopt a "flat" morphology, however, when the growth factors are removed, they revert back to spindle-like morphology. This is completely normal. It is best to withdraw the growth factors (EGF and FGF2) first (at least a couple of days) before differentiation using neural differentiation medium.

Technical Resources